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Abstract. A microscopical model is proposed, describing the origin and properties of three
closely spaced zero-phonon lines observed in the green Cu band in ZnO:Cu crystals labelled
α, β and γ . These excitations are known to be formed by a charge-transfer reaction with
hole bound states. These lines are shown to originate from an intermediately bound exciton of
acceptor type,(Cu(+)(d9 + e), h). This sort of exciton, in which both carriers are captured at
intermediate-radius orbitals, results from the wurzite-type symmetry of the ZnO:Cu system. The
electronic structure obtained for these three intermediately bound excitons enables us to explain
their magneto-optic behaviour and to calculate theirg-values.

Additionally, we determined the quantum efficiency of both intracentre and exciton
transitions by using time-resolved and calorimetric absorption spectroscopy. While no
(Cu(+), h)–Cu(2+)(2T2) luminescence is observed in ZnS, the exciton states in ZnO are purely
radiative only to the ground state, Cu(2+)(2T2). The picture of an intermediately bound exciton
explains the recombination channels and also makes clear the difference between copper states
in the ZnS and ZnO systems.

1. Introduction

Copper is a prominent luminescence activator in II–VI compounds which gives rise to
various luminescence and absorption bands in the visible and near-infrared spectral regions
[1–8]. In ZnS, CdS and ZnO, there are two transitions with Cu2+ as the ground state—
the intracentre Cu(2+)(2T2–2E) transition and the Cu2+–(Cu(+), h) charge-transfer transition
(see figure 1). Despite certain similarities, there are some striking differences between the
spectral properties of copper in the sulphide compounds and in ZnO. Compared to the cases
of ZnS and CdS, the three Cu2+ levels in ZnO are much deeper and have binding energies
of 1.233 eV, 1.2 eV and 3.25 eV respectively [9, 10]. At the onset of the Cu2+ charge-
transfer band, sharp resonances (usually calledα-, β- andγ -ZPL (zero-phonon lines)) are
observed and interpreted as(Cu(+), h) states, where h stands for a hydrogen-like hole state
(see figure 2).

The three zero-phonon lines,α, β and γ , of the green luminescence of copper in
ZnO [13–17] present a puzzle. Experimentally it is quite clear that theα-, β- andγ -lines
appear due to transitions between the ground Cu(2+)(2T2) and excited(Cu(+), h) states of the
impurity. Three ZPLs are positioned in an energy interval of 14 meV with a hole binding
energy of about 380 meV. Therefore, it is impossible to identify these as hydrogen-like
hole states of a Coulomb potential. Magneto-optic measurements show that these ZPLs are
Kramers doublets with different and anisotropicg-factors.
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Figure 1. A schematic hole picture of copper in ZnO and ZnS. The Cu2+(2E–2T2) and the
(Cu+, h)← Cu2+ transitions are represented by arrows. The dashed transitions are not observed
in luminescence, and the calculated quantum yieldsη are also indicated.

Figure 2. A schematic diagram of various transitions in ZnO:Cu in the hole representation, also
exhibiting transitions providing theα-, β- andγ -lines.

It was shown [11, 12] recently for Ni in CdS that the approach based on deeply bound
excitons may be not adequate and has to be modified for the wurzite-type crystals in order to



α-, β- andγ -excitons in ZnO:Cu 2009

explain the experimental data. This has been done by means of the concept of intermediately
bound excitons. The aim of this paper is to show thatα-, β- and γ -ZPLs are connected
to excitons intermediately bound to copper impurities, [Cu(+)(d9 + e), h]. The degree of
localization of the tenth electron in copper and the binding energy and symmetry properties
of the hole are considerably influenced by the symmetry of the crystalline environment
of the impurity (the C3v group). They are responsible for a significant change in the
complex excitation spectra and other properties. The idea that theα-, β- andγ -ZPLs are
due to excitation of the intermediately bound excitons is supported also by additional new
experimental data on the isotope shifts of these ZPLs [18] and on their relaxation behaviour.

The relaxation behaviour of the excited(Cu+, h) and Cu2+(2E) states is studied by
means of time-resolved spectroscopy allowing one to determine the radiative part of the
relaxation and by calorimetric absorption spectroscopy (CAS) allowing one to determine the
nonradiative part of the process. Using these data, calculations of the quantum efficiency for
each transition can be carried out. It is shown that the decay of the excited(Cu(+)(d9+e), h)
states to the Cu2+(2T2) ground state is purely radiative. The picture of intermediately bound
excitons explains this observation and makes clear the difference between the Cu(+)(d10, h)
states in ZnS and the intermediately bound exciton(Cu(+)(d9+ e), h) states in ZnO.

2. Experimental results

2.1. The set-up

The samples used for the measurements are high-quality rods of ZnO grown in the lab-
oratories of Professor Heiland, at Aachen, and Professor Mollwo, at Erlangen. The crystals
contain copper as an unintentional dopant and the impurity concentration varies between
10 and 250 ppm. The copper concentration in the unintentionally doped ZnO crystals
is determined by absorption measurements of the Cu2+ ZPL in combination with ESR
measurements relative to a reference crystal with known copper concentration. The copper
concentration of the reference crystal was analysed by chemical methods.

For the determination of radiative and nonradiative transition rates we combine data
from the time-resolved photoluminescence experiments and CAS. CAS detects the increase
of sample temperature caused by the generation of phonons during the nonradiative
relaxation, and thus determines the quantum efficienciesη of the relaxation processes
[19]. Using the time-resolved luminescence spectroscopy, we determine the lifetimeτ

of the excited states, which is limited by the radiative as well as by the nonradiative
processes(τ−1 = Wr +Wnr). The radiative and nonradiative relaxation rates are given by
two parameters,τ andη:

Wr = η

τ
Wnr = 1− η

τ
.

2.2. Results

Three ZPLs (α, β and γ ) were detected in the excitation spectrum of the green Cu band
in ZnO [14] and their binding energies were found to be rather close to each other. The
Zeeman data for these lines have already been published by Broseret al [14] and Robbins
et al [16] and the main results are briefly summarized here. All of the ZPLs exhibit
anisotropic splitting with respect to thec-axis. Theg-values of the different(Cu+, h) states
are presented in table 1. The anisotropies are different for the three transitions and thus the



2010 P Dahan et al

recent new interpretation of theβ- andγ -lines as local phonon modes of theα-transition,
put forward by Mel’nichuket al [17] is revised.

Table 1. Experimental and calculatedg-values forα- β- andγ -ZPLs.

g‖ g⊥
Irreducible

Line representation Energy (eV) Experimental Calculated Experimental Calculated

α 04 2.8602 2.2 1.85 −1.9 −2.15
β 04 2.8688 1.8 1.85 2.3 1.85
γ 04 2.8741 −2.0 −2.15 2.4 2.15

It is a striking fact that the luminescence intensity connected to the excited Cu2+ states
in ZnO drastically differs from that in the sulphide compounds. In ZnS and CdS, intense
infrared Cu2+(2E–2T2) luminescence and absorption bands are easily observed, whereas the
Cu2+ luminescence in ZnO is extraordinarily weak in spite of the strong absorption band.

Typical CAS spectra of Cu2+ in ZnO and ZnS have been published by Broseret al [20].
The results are summarized in figure 1. The quantum yields for the Cu2+ transitions are
η = 29± 4% for ZnO andη = 54± 4% for ZnS. These quantum yields and the measured
decay times,τ ≈ 200 ns for ZnO [21] andτ ≈ 350 ns for ZnS [22], enable us to calculate
the radiative,Wr , as well as nonradiative,Wnr , rates for the Cu2+ transition. It was found
thatWr is 1.5×106 s−1 for ZnO and ZnS, indicating the same oscillator strength. Additional
efficient multiphonon relaxations withWnr = 3.6× 106 s−1 for ZnO and 1.3× 106 s−1 for
ZnS take place.

The Cu2+ fine-structure spectra demonstrate that the2T2–2E transition has a medium
Huang–Rhys factorS. Thus, the multiphonon relaxation rate depends on the ratio between
the transition and the phonon energies. A lower quantum yieldη and a largerWnr for
Cu2+ can be understood as being results of the lower transition energy and the larger
phonon energy in ZnO(ELO(γ ) = 72.8 meV (ZnO) or 42.8 meV (ZnS)). Hence, the Cu2+

luminescence intensity should be weaker for ZnO, but still observable.
Indeed, a resonant infrared excitation via the2T2–2E absorption band leads to the

detection of the Cu2+ luminescence in ZnO. However, a short-wavelength excitation of
this luminescence using an Ar+-ion laser or an XBO lamp as the excitation source is not
successful for ZnO in contrast to ZnS. To resolve this problem, it is necessary to investigate
different excitation processes and the corresponding transition rates in ZnS and ZnO.

Now we present a picture of the different excitation behaviours for the Cu2+ acceptor in
ZnO and ZnS. In the sulphide compounds the Cu2+ luminescence can be efficiently excited
above 1.2 eV via the acceptor-type charge-transfer process and the subsequent recapture
of the free hole. The recombination of the acceptor(Cu+, h) state into the Cu2+(2E) state
is essential for the excitation of the Cu2+(2E–2T2) luminescence. This(Cu+, h) state is
observed in the PLE spectra of Cu2+ in ZnS. The proposed nonradiative decay of this
state is supported by the quantum yieldη of the (Cu+, h)–Cu2+(2T2) process determined
by means of CAS to be 0± 2%. Furthermore, no(Cu+, h)–Cu2+(2T2) luminescence is
observed in ZnS (see figure 1).

The CAS and the calorimetric transmission spectra (CTS) of the(Cu+, h)–Cu2+

transition in ZnO are shown in figure 3. Here, the energy difference between the
(Cu+, h) and the two Cu2+ states is much larger than for ZnS (figure 1), resulting in
lower multiphonon recombination probabilities. Thus, the nonradiative recombination is
completely quenched and the measured 8± 4% heat production (figure 3) is due solely to
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Figure 3. Calorimetric absorption and transmission spectra of the(Cu+, h) ← Cu2+ charge-
transfer transition in ZnO at 45 mK. The calculated quantum yieldη is 100± 4%.

the phonon-assisted radiative recombination processes. In the photoluminescence spectra
only the(Cu+, h)–Cu2+(2T2) transitions are observed. Thus, the quantum yield of the green
luminescence in ZnO is 100± 4%. This proves that the((Cu+, h) state in crystals with
less than 250 ppm copper concentration decays purely radiatively to the ground state since
this process does not lead to an excitation of the Cu2+(2E–2T2) luminescence. However,
it should be remarked that larger copper concentrations usually quench the luminescence
intensity. This is probably due to energy transfer between interacting copper centres or
because of additional defects which open up additional nonradiative recombination channels.
Our result is limited to the low-concentration regime, where only isolated copper centres
have to be taken into account.

3. Theory

The model to be presented here assumes that theα-, β- and γ -ZPLs are associated with
the Cu+2(d9) + hν → (Cu+(d10), hi) transitions in which the Cu impurity in its ground
state is excited in such a way that it binds an acceptor-type exciton. The tenth electron
is bound to the impurity d shell in a state which is strongly swollen due to the covalent
hybridization with the Bloch states of the host semiconductor. The exciton hole is captured
by the potential created by this tenth electron. Mechanisms which may be responsible for
this capture are discussed in our previous paper [12]. It is shown there that in hexagonal
wurzite-type semiconductors the exciton electron may make a strong contribution to the
impurity pseudopotential which has the properties of a projection operator and acts only
on the04 states. This potential may create levels in the forbidden energy gap from the
valence bands of the corresponding symmetry, since there are three valence bands with
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their top wave functions transforming according to the04 irreducible representation†. in
the hexagonal ZnO crystal one would expect to observe three levels in the forbidden energy
gap which may be associated with theα-, β- andγ -ZPLs.

All of the mathematical details necessary for understanding this model are presented
in reference [12]. Here this model will be briefly outlined and some details specific to
the processes discussed in this paper will be added. The exciton electron wave function is
looked for as an eigenstate of the electron Hamiltonian

He = T̂ + Vd(r −R0)+ U ′(r −R0) (1)

where T̂ is the electron kinetic energy operator,U ′(r − R0) is the lattice crystal-field
potential acting on the transition metal impurity at the siteR0 andVd(r) is the d-impurity
potential.

The electron wave function is expanded in the basis{ψ̃kaσ , ψdγ σ } containing the impurity
d orbitals, and the Bloch wave functions orthogonalized to these orbitals. Then the energy
of the electron level within the forbidden energy gap is determined by the equation

Ei01 = ε(10)
01
+M(Ei01) (2)

where

M(Ei01) =
∑
ak

|V05a(k)|2
Ei01 − εa(k)

. (3)

andV05a(k) = 〈d05|U ′|ka〉 is the matrix element responsible for the hybridization of the
d05 electron with Bloch state of the band a. The resulting bound electron states transform
according to the irreducible representation05. However, accounting for the spin–orbit
interaction (see, e.g., [23]) in the C3v group, the05 state splits into several states with the
04 ground state which will be of special interest to us in what follows.

The experimental position of this level in ZnO is about 0.2 eV below the bottom of the
conduction band. Then the leading contribution to the mass operatorM(Ei01) comes from
the conduction band, hybridization with which is allowed in hexagonal crystals. Therefore,
similarly to in the case of CdS:Ni discussed in references [11, 12], the electron wave function
may be represented as a bonding combination

ψ
(10)
i04
' 1√

(1+M ′c04
)

[
ψd+

√
M ′c04

ϕs

]
(4)

in which the domination of the Bloch tail is ensured by the large value of

M ′cγ = −
dMc(Eiγ )

dEiγ

due to the proximity of the electron level to the conduction band c. These wave functions
transform according to the irreducible representation04 and, as we will see below, determine
also the symmetry properties of the bound hole states.

The hole wave function is an eigenfunction of the Hamiltonian[
−
(
T̂ +

∑
j

U(r −Ri )

)
− U cc+1Ũ − Eh

]
ψbγ (r −R0) = 0 (5)

† It is worth mentioning here that the07 irreducible representation of the group C6v describes these valence
bands in pure wurzite crystals. A substitutional impurity lowers the point symmetry to C3v and this irreducible
representation becomes04. The irreducible representations of the point group C3v will be used throughout the
text.
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where the analysis carried out in reference [12] allows one to keep just the pseudopotential

U cc =
(

M ′a0
1+M ′a0

)
Ûd (6)

in which

Û = 1E P̂0 + UdP̂0 + P̂0Ud

where P̂0 = |ϕ0〉〈ϕ0| and ϕ0 is the Bloch tail of the impurity wave function (4),
1E = Ei04−Eh. It appears due to the necessity of orthogonalizing the hole wave function
to that of the tenth electron. The Coulomb interaction between the exciton electron and hole
can be neglected here, or, if necessary, accounted for as a small perturbation [12]. Other
contributions to the impurity potential are collected together in the short-range impurity
1Ũ .

The calculation of the three hole04 levels is presented in appendix A; it leads to three
equations for these levels, each of which is similar to a Slater–Koster equation (see, e.g.,
[23]). Sufficiently large values ofM ′ such as can be expected in wurzite-type crystals allow
one to obtain the three desired levels.

These levels are04 Kramers doublets originating from three04 valence bands. Calc-
ulating the corresponding wave functions in the same approximations leads to

ψ
(h)

bα

(
+ 1̃

2

)
= − sin

θ

2
ψb,p

∣∣∣∣+ 1̃

2

〉
+ cos

θ

2
ψb,p′

∣∣∣∣+ 1̃

2

〉
ψ
(h)

bα

(
− 1̃

2

)
= sin

θ

2
ψb,p

∣∣∣∣− 1̃

2

〉
− cos

θ

2
ψb,p′

∣∣∣∣− 1̃

2

〉
ψ
(h)

bβ

(
+ 1̃

2

)
= cos

θ

2
ψb,p

∣∣∣∣+ 1̃

2

〉
+ sin

θ

2
ψb,p′

∣∣∣∣+ 1̃

2

〉
ψ
(h)

bβ

(
− 1̃

2

)
= cos

θ

2
ψb,p

∣∣∣∣− 1̃

2

〉
+ sin

θ

2
ψb,p′

∣∣∣∣− 1̃

2

〉
ψ
(h)

bγ

(
± 1̃

2

)
= ψb,d

√
2

3

[
| ± 1̃∓〉 − 1√

2
|0̃±〉

]

(7)

where

tanθ ' 21p,p′

1p,p−1p′,p′
.

These functions are combinations of the pseudo-wave functionsψ
(h)
b,a each of which contains

the contribution of only one of three valence bands, a= p, p′ and d. The ket vectors
|L̃σ 〉 show the values of the reduced angular momentum and spin. The totally quenched
momentumL̃ = 0 for α andβ is omitted.

Taking into account also the core part of the hole wave function constructed from the
Cu(d̃10) states, the full hole wave function (cf., equation (32) in [12]) is

ψ
(h)
i = ψbi + Fγd ψdγ4(Cu) (8)

where

F
γ4

d =
〈γ4|W |ψb〉
Ei + Eγ4

and i = α, β, γ .
These are three04 Kramers doublets corresponding to theα-, β- andγ -lines.
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4. Optical properties

4.1. Magneto-optic behaviour

This section presents a comparison between the theoretical predictions and experimental
observations for the magneto-optic behaviour of theα-, β- andγ -ZPLs. A magnetic field
acts mainly on the hole, since the closed Cu(d10) shell with its 01 symmetry is hardly
affected by the field. The spin Hamiltonian describing the linear Zeeman interaction in
each Kramers doublet is generally written as

HZ = µ0(γrKL+ g0S) ·H (9)

whereS and L are the spin and orbital angular moments of the hole. The covalency
reduction factorK is different for each hole state and will be found explicitly as a function
of the hybridization parameterFγ , equation (8).γr is the reduction factor due to the Ham
effect [24].

The orbital angular moments of the p-type hole states corresponding to the Kramers
doublets ofα and β type are completely quenched,L = 1→ L̃ = 0 (a spin-like hole),
due to the fact that the hole is bound by a short-range potential [25]. Theγ -exciton hole
has a d-type wave function with the reduced angular momentL̃ = 1 in covalent crystals.
Therefore, the effective spin Hamiltonian for each doubletJ̃ = 1

2 in axial symmetry is

HZ = g‖effHzJ̃z + g⊥eff (HxJ̃x +HyJ̃y) (10)

where

g‖eff = 2(gs + gL̃)
〈
i,± 1̃

2

∣∣∣∣J̃z∣∣∣∣i,± 1̃

2

〉
g⊥eff = (gs + gL̃)

〈
i,± 1̃

2

∣∣∣∣J̃+∣∣∣∣i,∓ 1̃

2

〉
.

(11)

gs and gL are calculated for the parallel and the perpendicular field configurations by
projectingS andL̃ onto the hole total angular momentum,J :

gs = g0
S · J
J · J

gL̃ = αγr
L̃ · J
J · J

whereJ = L̃+ S. The covalency factor isαd = −1 for a d-wave function andαp = 1 for
a p-wave function [26].

Using equation (10) and the hole wave functions (8) one gets

g‖(α, β) =
[
g0−

F 2
γ

3
(g0− 4γ d

r α)

]
+1gL

g‖(γ ) =
[
−1

3
(g0− 4γ b

r α)−
F 2
γ

3
(g0− 4γ d

r α)

]
+1gL

(12)



α-, β- andγ -excitons in ZnO:Cu 2015

and

g⊥(α) =
[
−g0− 1

3
(g0− 4γ d

r α)F
2
γ4

]
+1gL

g⊥(β) =
[
g0− 1

3
(g0− 4γ d

r α)F
2
γ4

]
+1gL

g⊥(γ ) =
[
−1

3
(4γ b

r α − g0)−
F 2
γ

3
(4γ d

r α − g0)

]
+1gL.

(13)

This type of hole bound with a considerably enhanced energy loses its host-state character
and, hence, its behaviour is probably a spin-like one which means thatg0 = +2.

Here a distinction is made between the two reduction factors resulting from the
interaction of the localized phonons with the hole wave function (8). The reduction factor
γ b
r results from the interaction with the band states andγ d

r from the interaction with the
d states of the Cu impurity. It was shown by Yamaguchi and Kamimura [27] that the
reduction factorγ d

r is about 0.65 due to the ground state of ZnO:Cu. Since the Bloch tail
ψib of the hole wave function formed by the band states weakly interacts with the local
vibration modes,γ b

r is estimated to be close to one. Using also a reasonable value for
the hole hybridization matrix elementsF 2

γ4
≈ 0.1, we calculated theg-values which are

presented in table 1.
One can see that all of the absolute values obtained for theg-factors are close to 2.

This corresponds to the spin-like character of the hole bound with a relatively large binding
energy, meaning thatg0 = +2. One can see that the calculated and measuredg-values
are rather close to each other and, what is more important, their signs coincide. A certain
numerical misfit may be caused by our limited knowledge of the1gL correction. A more
detailed knowledge of the hole wave function structure is also necessary.

4.2. Recombination channels

One of the important questions concerning the recombination channels for theα-, β- and
γ -excitons is why the recombination goes only via the ground state2T2 of the Cu2+ in ZnO,
whereas, in other systems, acceptor excitation may also involve the excited state2E of the
impurity. In order to find out which of these two states plays the more important part in
these recombination processes, we compare the corresponding rates of the radiative dipole
transitions.

The intensity of a dipole transition is given by

I = 4e2π2ν4

c3
|Xif |2 (14)

where the dipole matrix elements for the transitions between the bound exciton and the Cu
(d9) final states are

Xif = 〈9f0(d9)|R̂|9(ex)
04
〉. (15)

The exciton wave function is

9
(ex)
04
= Â

(
G

A1
T2√
3
9T204(d

9)ψt204 +
G

A1
E√
2
9E05,6(d

9)ψe05,6

)
ψ
(h)
i04

(16)

and the Cu(d9) wave functions are

9f04 = 9T204(d
9) or 9E04(d

9). (17)
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Possible differences in the wave functionsψ(h)
i04

for α-, β- or γ -excitons are of minor
importance for this calculation.

The ratio of the recombination intensities,It2 and Ie, for the 2T2 and 2E states is
calculated according to

ρ = It2

Ie
= 2

3

(
G

A1
T2

G
A1
E

)2(
νt2

νe

)4(M ′t2
M ′e

)(
1+M ′e
1+M ′t2

)(∑
i

Ri

)/
Rz (18)

whereRi = |〈ψ(h)
i04
|R̂i |ϕγ 〉|2. γ is s for the transition to the state2T2 and p for that to the

2E state;i takes the valuesx, y andz.
The valueM ′t2 is expected to be large due to the position of2T2 level near the conduction

band, while the2E level lying about 1 eV below the bottom of the conduction band should
result in a small value ofM ′e ∼ 0.15. This difference reflects the corresponding difference in
the localization radii of the impurity d electron in these two states, the radius in the ground
state of the impurity being much larger than in the excited states. That is why the transition
to the ground state has a much stronger intensity (cf., the antenna effect considered by
Rashba and Gurgenishvili [28]).

Another contribution results from the fact that in the point group C3v, recombination
to the2E state is allowed only ifz-polarized light is emitted with the corresponding dipole
matrix elementRz, while recombination to the2T2 state is allowed for unpolarized light as
well. The ratio of the photon frequencies(νt2/νe)

4 should be also taken into account. As
a result theIe-intensity is expected to be about two orders of magnitude smaller than the
It2-intensity. This difference explains why only the recombination to the ground state2T2

is observed.

5. Summary

A microscopical model accounting for three close ZPLs,α, β andγ , in ZnO is proposed.
The model addresses the origin of the excitations responsible for the appearance of these
lines and various spectroscopic and optical features observed experimentally. Excitons
intermediately bound to Cu impurities are the principal players. Excitons of this type can
be formed in crystals with hexagonal wurzite-type lattices [11, 12] which is typical for
ZnO. We have seen that the wave function of the rather loosely bound tenth electron in
the Cu(d̃(10)) pseudo-ion is strongly swollen due to hybridization of the d states with the
states at the bottom of the conduction band. On the other hand the hole wave function was
found to be constructed by an admixture of the band states to the d states due to a nonlocal
potential and strong orthogonalization corrections.

The dominant potential responsible for hole binding is a short-range pseudopotential
with properties of a projection operator projecting onto the04 subspace. That is why this
potential is capable of binding only holes from the valence bands of04 symmetry and this
explains the origin of these three Kramers doublets.

It should be pointed out that in the case of Cu in CdS (wurzite), the intermediately bound
exciton cannot be formed because of the mid-gap position of the Cu2+/+ charge-transfer
level [29], i.e., far away from the divergency of the functionM ′cγ .

Using the concept of intermediately bound excitons, we are also able to explain the
magneto-optic behaviour of theα-, β- andγ -ZPLs.

The extremely strong differences between two possible recombination channels of theα-,
β- andγ -excitation states is explained using the concept of intermediately bound excitons.
The exciton states, in various systems, are known to recombine to the2E and2T2 states of
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the Cu2+(d9) impurity, whereas in the case of the ZnO system the recombination is observed
to the2T2 state only. This difference follows directly from the wave-function properties of
the intermediately bound excitons.

The relaxation behaviour of the excited(Cu+, h) and Cu2+(2E) states is obtained by
means of time-resolved spectroscopy used to determine the radiative relaxation and by
CAS which determines the nonradiative recombination part. These data allow one to
calculate the quantum efficiency for each transition. It is shown that the decay of the
excited (Cu(+)(d9 + e), h) states is purely radiative to the Cu2+(2T2) ground state. The
picture of intermediately bound excitons explains this observation and makes clear the
difference between the Cu(+)(d10, h) states in ZnS and the intermediately bound exciton
(Cu(+)(d9+ e), h) states in ZnO.
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Appendix A. Hole levels

The pseudopotential (6) has the properties of a projection operator acting only on the
functions transforming according to the04 irreducible representation. That is why this
potential may form bound hole states only from the wave functions of three, a= p, p′ and
d, valence bands constructed from p and d states, respectively [30, 31], and transforming
according to the04 representation. Therefore just three hole levels corresponding to theα-,
β- andγ -lines may appear.

The energies of these levels may be calculated using the same procedure as in [12],
which uses the fact that the short-range potential (6) contains factorizable terms. The hole
wave function is considered as an expansion:

ψh =
∑
ka

F
04
ka ψ̃ka (A1)

over the orthogonalized Bloch statesψ̃ka. The summation is over the three above-mentioned
valence bands, a= p, p′ and d. Then the quantities

AaS =
∑
k

Ska04F
γ

ka

AaV =
∑
k

Vka04F
γ

ka

(A2)

are defined whereSka04 = 〈kaσ |d̃04〉 andVka04 = 〈kaσ |Vd|d̃04〉. The summation overk
and the symmetry properties of the Bloch wave functions make these quantities real. The
same simplifying approximation,Vka04 = V Ska04, as was used in [12] is used here, where
V is a parameter characterizing the impurity potential.

Substituting equation (A1) for the hole wave function into the Schrödinger equation (5)
and then multiplying it byS∗ka and summing overk produces three linear equations for the
quantities (A2), namely:

AaS −
∑

a′

[
BaSS(1E + 2V )+1a,a′

]
Aa′S = 0 (A3)
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where a= p, p′ and d; and

BaSS(Eh) = M ′c0
1+M ′c0

∑
k

1

Eak − Eh
S∗ka04

Ska04.

Equation (A3) also contains a contribution due to the short-range potential1Ũ which is
approximately represented as∑

k,k′

S∗ka04

Eak − Eh
1Ua,a′(k,k

′)F γk′a′ ≈ BaSS(Eh)
∑

a′
1a,a′Aa′S (A4)

where1Ua,a′(k,k
′) are the matrix elements of1Ũ .

Although the symmetry allows for mixing between all three valence bands, it should be
rather strong between the p and p′ bands and weak if the d band is involved. That is why
the matrix elements1dp and1dp′ will be neglected below:∣∣∣∣∣∣∣∣∣∣

1− (X +1dd)BdSS −XBdSS −XBdSS

−XBpSS 1− (X +1pp)BpSS −(X +1pp′)BpSS

−XBp′SS −(X +1pp′)Bp′SS 1− (X +1p′p′)Bp′SS

∣∣∣∣∣∣∣∣∣∣
= 0 (A5)

whereX is standing for1E + 2V in this expression.
Equation (A5) without short-range potential matrix elements was studied in reference

[12] and a level for the hole was found. In the general case, three hole levels may appear,
equations for which may be found, for example, in the limit of large values of these matrix
elements:

BdSS = 1

1dd
(A6)

BpSS = 1pp+1p′p′

2Dpp′
±
√
(1pp+1p′p′)2−Dp′p

2Dp′p
(A7)

whereDp′p = 1pp1p′p′ − 12
pp′ . In order to avoid overcomplicated equations, we assume

here thatBpSS = Bp′SS .
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